Standing Wave Patterns for the Complex Swift-Hohenberg Equation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation Equation for Stochastic Swift-Hohenberg Equation

The purpose of this paper is to study the influence of large or unbounded domains on a stochastic PDE near a change of stability, where a band of dominant pattern is changing stability. This leads to a slow modulation of the dominant pattern. Here we consider the stochastic Swift-Hohenberg equation and derive rigorously the Ginzburg-Landau equation as a modulation equation for the amplitudes of...

متن کامل

Faceting and coarsening dynamics in the complex Swift-Hohenberg equation.

The complex Swift-Hohenberg equation models pattern formation arising from an oscillatory instability with a finite wave number at onset and finds applications in lasers, optical parametric oscillators, and photorefractive oscillators. We show that with real coefficients this equation exhibits two classes of localized states: localized in amplitude only or localized in both amplitude and phase....

متن کامل

Localized Hexagon Patterns of the Planar Swift-Hohenberg Equation

We investigate stationary spatially localized hexagon patterns of the two-dimensional (2D) Swift– Hohenberg equation in the parameter region where the trivial state and regular hexagon patterns are both stable. Using numerical continuation techniques, we trace out the existence regions of fully localized hexagon patches and of planar pulses which consist of a strip filled with hexagons that is ...

متن کامل

Traveling waves and defects in the complex Swift-Hohenberg equation.

The complex Swift-Hohenberg equation models pattern formation arising from an oscillatory instability with a finite wave number at onset and, as such, admits solutions in the form of traveling waves. The properties of these waves are systematically analyzed and the dynamics associated with sources and sinks of such waves investigated numerically. A number of distinct dynamical regimes is identi...

متن کامل

Defect formation in the Swift-Hohenberg equation.

We study numerically and analytically the dynamics of defect formation during a finite-time quench of the two-dimensional Swift-Hohenberg (SH) model of Rayleigh-Bénard convection. We find that the Kibble-Zurek picture of defect formation can be applied to describe the density of defects produced during the quench. Our study reveals the relevance of two factors: the effect of local variations of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Progress of Theoretical Physics

سال: 1997

ISSN: 0033-068X,1347-4081

DOI: 10.1143/ptp.98.577